Publication
(1) L Sun, J Qin, W Rong, Hao Ni, H Guo and J Zhang*, Cellophane surface-induced gene, VdCSIN1, regulates hyphopodium formation and pathogenesis via cAMP-mediated signaling in Verticillium dahliae, Molecular Plant Pathology, 2019, 20, 323-333.
(2) J Zhang, S Dong, W Wang, J Zhao, X Chen, H Guo, C he, Z He, Z Kang, Y Li, Y Peng, G Wang, X Zhou, Y Wang*, and J Zhou*, Plant immunity and sustainable control of pests in China: Advances, opportunities and challenges (in Chinese), Scientia Sinica Vitae, 2019, 49, 1-29.
(3) S Mei, Z Wang, J Zhang*, and W Rong*, First report of leaf blight on Stenotaphrum secundatum caused by Nigrospora osmanthi in China, Plant Disease Notes, 2019, 103,1783-1783.
(4) F Gao, B Zhang, J Zhao, J Huang, P Jia, S Wang, J Zhang, J Zhou, and H Guo, Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens, Nature Plants, 2019, 5, 1167-1176
(5) J Qin, K Wang, L Sun, H Xing, S Wang, L Li, S Chen, H Guo* and J Zhang*, The plant specific transcription factors CBP60g and SARD1 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity, eLife, 2018, doi: 10.7554/eLife.34902.
(6) J Qin#, X Zhou#, L Sun, K Wang, F Yang, H Liao, W Rong, J Yin, H Chen, X Chen* and Jie Zhang*, The Xanthomonas effector XopK harbours E3 ubiquitin-ligase activity that is required for virulence, New Phytologist, 2018, 220, 219-231.
(7) X Zhou, L Jia, H Wang, P Zhao, W Wang, N Liu, S Song, Y Wu, L Su, J Zhang, N Zhong*, and G Xia*, The potato transcription factor StbZIP61 regulates dynamic biosynthesis of salicylic acid in defense against Phytophthora infestans infection, The Plant Journal, 2018, 95, 1055–1068.
(8) L Sun, J Qin, K Wang, J Zhang*, Expansion of pathogen recognition specificity in plants using pattern recognition receptors and artificially designed decoys, Science China Life Sciences, 2017, 9, 797-805.
(9) S Wang, H Xing, C Hua, H Guo* and J Zhang*, An improved single-step cloning strategy simplifies the Agrobacterium tumefaciens-mediated transformation (ATMT)-based gene disruption method for Verticillium dahliae, Phytopathology, 2016, 106, 645-652.
(10) Y Li#, L Han#, H Wang, J Zhang, S Sun, D Feng, C Yang, Y Sun, N Zhong*, and G Xia*, The thioredoxin GbNRX1 plays a crucial role in homeostasis of apoplastic reactive oxygen species in response to Verticillium dahliae infection in cotton, Plant Physiology, 2016, 170, 2392-2406.
(11) S Kang, F Yang, L Li, HChen, S Chen, and J Zhang*, The Arabidopsis transcription factor BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1 is a direct substrate of MITOGEN-ACTIVATED PROTEIN KINASE6 and regulates immunity, Plant Physiology, 2015, 167, 1076-1086.
(12) F Feng, F Yang, W Rong, X Wu, J Zhang, S Chen, C He*, and J Zhou*, A Xanthomonas uridine 5’-monophosphate transferase inhibits plant immune kinases, Nature, 2012, 485, 114-118.
(13) Z Zhang, Y Wu, M Gao, J Zhang, Q Kong, Y Liu, H Ba, J Zhou, and Y Zhang*, Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2, Cell Host Microbe, 2012, 11, 253-263.
(14) T Xiang, N Zong, J Zhang, J Chen, M Chen and J Zhou*, BAK1 is not a target of the Pseudomonas syringae effector AvrPto, Molecular Plant Microbe Interactions, 2011, 24, 100-107.
(15) J Zhang*, and J Zhou, Plant immunity triggered by microbial molecular signatures, Molecular Plant, 2010, 3, 783-793.
(16) J Zhang#, W Li# , T Xiang, Z Liu, K Laluk, X Ding, Y Zou, M Gao, X Zhang, S Chen, Tesfaye Mengiste, Yuelin Zhang, and Jian-min Zhou*, Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector, Cell Host Microbe, 2010, 7, 290-301.
(17) J Zhang# , H Lu# , X Li, Y Li, H Cui, C Wen, X Tang, Z Su, and J Zhou*, Effector-triggered and pathogen-associated molecular pattern–triggered immunity differentially contribute to basal resistance to Pseudomonas syringae, Molecular Plant Microbe Interactions, 2010, 23, 940-948.
(18) L Chen# , H Wang# , J Zhang, L Gu, N Huang, J Zhou, and J Chai*, Structural basis for the catalytic mechanism of phosphothreonine lyase, Nature Structural Molecular Biology, 2008, 15, 101-102.
(19) T Xiang#, N Zong#, Y Zou#, Y Wu, J Zhang, W Xing, Y Li, X Tang, L Zhu, J Chai, and J Zhou*, Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases, Current Biology, 2008, 18, 74-80.
(20) J Zhang, F Shao, Y Li, H Cui, Li Chen, H Li, Y Zou, C Long, L Lan, J Chai, S Chen, X Tang, and J Zhou*, A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants, Cell Host Microbe, 2007, 1, 175-185.
(21) H Li#, H Xu#, Y Zhou#, J Zhang, C Long, S Li, S Chen, J Zhou, and F Shao*, The phosphothreonine lyase activity of a bacterial type III effector family, Science, 2007, 315, 1000-1003.
(22) X Li, H Lin, W Zhang, Y Zou, J Zhang, X Tang, and J Zhou*, Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors, Proceedings of the National Academy of Sciences, 2005, 102, 12990-12995.