Principal Investigator,Professor : Molecular Microbiology and Genome Editing

XIANG Hua(Director)
Address:NO.1 West Beichen Road, Chaoyang District, Beijing 100101, China
Research Interests
Extremophiles: Environmental Microbiome, Genome Editing and Synthetic Biology
(1)Microbiome of Soda Lake and Other Extreme Environments: mechanisms underlying carbon cycling, environmental adaptation, and novel microbial resources for biotechnology;
(2)CRISPR and Genome Editing: CRISPR-Cas and other novel systems in anti-virus, and innovation of genome editing tools;
(3)Reengineering of Halophiles: Mechanism for carbon storage and synthetic biology for bioplastic (PHA) production with halophilic archaea and bacteria.
B.S. 1991 Biology, Beijing Normal University
M.S. 1994 Genetics, Beijing Normal University
Ph.D 1997 Biochemistry & Molecular biology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC)
Work experience
Postdoctoral Fellow Training
1997-1999 Dr. H. Tan’s Lab., Institute of Microbiology, Chinese Academy of Sciences, Beijing, China;
1999-2001 Dr. David WC Li’s Lab., University of Medicine & Dentistry of New Jersey (UMDNJ), New Jersy, U.S. A.
Professional Appointments
2001-2003, Principal Investigator and Associate Professor, Institute of Microbiology, Chinese Academy of Sciences (IMCAS)
2003.12-present, Principal Investigator, Professor and Ph.D Advisor, IMCAS
2009, Awardee of the National Distinguished Young Scholar Program, China
2017- present, Director, State Key Laboratory of Microbial Resources
2018—present, Deputy Director-General, IMCAS
2021-present: Secretary-General, Chinese Society for Microbiology
Editorial Board
Journal of Genetics and Genomics (Associate editor/Board member, 2014-)
Frontiers in Microbiology (Associate editor, 2018-)
Frontiers in Genome Editing (Associate Editor, 2019-)
Applied and Environmental Microbiology (Editorial Board member,2013-2018)
mLife (Associate Editor,2021-)
The Innovation (Editorial Board member, 2020-)
Acta Microbiologica Sinica (Board member/ Associate Editor, 2007-)
Acta Laser Biology Sinica (Associate Editor,2018-)
Aquatic Biosystems (Section Editor, 2012-2015)
The main research areas
Molecular Microbiology, Synthetic Biology and Genome Editing
Toxin-antitoxin RNA pairs safeguard CRISPR-Cas systems.
(Science, 2021)
Biosynthesis of tailor-made PHBHV and its superior biocompatibility.
(Biomaterials, 2017)
Activation of a dormant replication origin in haloarchaea
(Nature Communications, 2015).

Selected Publication
[1] Zhou H, Zhao D, Zhang S, Xue Q, Zhang M, Yu H, Zhou J, Li M, Kumar S and Xiang H*(2022). Metagenomic insights into the environmental adaptation and metabolism of Candidatus Haloplasmatales, one archaeal order thriving in saline lakes. Environ Microbiol.. doi: 10.1111/1462-2920.15899.
[2] Xue Q, Zhao D, Zhang S, Zhou H, Zuo Z, Zhou J, Li M and Xiang H*(2021). Highly integrated adaptive mechanisms in Spiribacter halalkaliphilus, a bacterium abundant in Chinese soda-saline lakes. Environ Microbiol 23(11): 6463-6482.
[3] Li M, Gong L, Cheng F, Yu H, Zhao D, Wang R, Wang T, Zhang S, Zhou J, Shmakov SA, Koonin EV, Xiang H*.Toxin-antitoxin RNA pairs safeguard CRISPR-Cas systems. Science. 2021; 372(6541): abe5601. Doi: 10.1126/science.abe5601  
[4] Lin L, Chen J, Mitra R, Gao Q, Cheng F, Xu T, Zuo Z, Xiang H*, Han J. Optimising PHBV biopolymer production in haloarchaea via CRISPRi-mediated redirection of carbon flux. Commun Biol. 2021;4(1):1007. Doi: 10.1038/s42003-021-02541-z  
[5] Cheng F, Wang R, Yu H, Liu C, Yang J, Xiang H*, Li M. Divergent degeneration ofcreAantitoxin genes from minimal CRISPRs and the convergent strategy of tRNA-sequestering CreT toxins. Nucleic Acids Res. 2021;49(18):10677-88. Doi: 10.1093/nar/gkab821  
[6] Xu Z, Li M, Li Y, Cao H, Miao L, Xu Z, Higuchi Y, Yamasaki S, Nishino K, Woo PCY, Xiang H*, Yan A. 2019. Native CRISPR-Cas-Mediated Genome Editing Enables Dissecting and Sensitizing Clinical Multidrug-Resistant P. aeruginosa. Cell Rep. 29(6):1707-1717.e3. doi: 10.1016/j.celrep.2019.10.006.  
[7] Gong L, Li M, Cheng F, Zhao D, Chen Y, Xiang H*. 2019. Primed adaptation tolerates extensive structural and size variations of the CRISPR RNA guide in Haloarcula hispanica. Nucleic Acids Res.47(11):5880-5891. doi: 10.1093/nar/gkz244.  
[8] Li M, Gong L, Zhao D, Zhou J, Xiang H*. 2017. The spacer size of I-B CRISPR is modulated by the terminal sequence of the protospacer. Nucleic Acids Res, 45(8): 4642-4654.
[9] Han J, Wu L, Liu X, Hou J, Zhao L, Chen J, Zhao D, Xiang H*. 2017. Biodegradation and biocompatibility of haloarchaea-produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymers. Biomaterials, 139: 172-186.
[10] Wang R, Li M, Gong L, Hu S, Xiang H*. 2016. DNA motifs determining the accuracy of repeat duplication during CRISPR adaptation in Haloarcula hispanica. Nucleic Acids Res, 44(9):4266-77.
[11] Yang H, Wu Z, Liu J, Liu X, Wang L, Cai S, Xiang H*, 2015, Activation of a dormant replication origin is essential for Haloferax mediterranei lacking the primary origins. Nature Communications, 6: 8321.
[12] Liu G, Hou J, Cai S, Zhao D, Cai L, Han J, Zhou J, Xiang H*. 2015. A patatin-like protein associated with the polyhydroxyalkanoate (PHA) granules of Haloferax mediterranei acts as an efficient depolymerase in degradation of native PHA. Appl Environ Microbiol., 81(9):3029-38.
[13] Han J, Wu LP, Hou J, Zhao D, Xiang H*. 2015. Biosynthesis, characterization and hemostasis potential of tailor-made poly(3-hydroxybutyrate-co-3- hydroxyvalerate) produced by Haloferax mediterranei. Biomacromolecules, 16: 578-588
[14] Hou J, Xiang H*, Han J*. 2015. Propionyl coenzyme A (propionyl-CoA) carboxylase in Haloferax mediterranei: Indispensability for propionyl-CoA assimilation and impacts on global metabolism. Appl Environ Microbiol., 81(2):794-804
[15] Cai S, Cai L, Zhao D, Liu G, Han J, Zhou J, Xiang H*. 2015. A novel DNA-binding protein, PhaR, plays a central role in the regulation of polyhydroxyalkanoate accumulation and granule formation in the haloarchaeon Haloferax mediterranei. Appl Environ Microbiol., 81(1):373-385
[16] Li M, Wang R, Xiang H*. 2014. Haloarcula hispanica CRISPR authenticates PAM of a target sequence to prime discriminative adaptation. Nucleic Acids Res, 42(11):7226-35
[17] Cai L, Cai S, Zhao D, Wu J, Wang L, Liu X, Li M, Hou J, Zhou J, Liu J, Han J, Xiang H*. 2014. Analysis of the transcriptional regulator GlpR, promoter elements, and posttranscriptional processing involved in fructose-induced activation of the phosphoenolpyruvate-dependent sugar phosphotransferase system in Haloferax mediterranei. Appl Environ Microbiol., 80(4):1430-40.
[18] Wu Z, Liu J, Yang H, Liu H,Xiang H*.2014. Multiple replication origins with diverse control mechanisms in Haloarcula hispanica. Nucleic Acids Res, 42(4): 2282-2294.
[19] Li M, Wang R, Zhao D,Xiang H*. 2014. Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process. Nucleic Acids Res, 42(4): 2483-2492.
[20] Hou J, Feng B, Han J, Liu H, Zhao D, Zhou J, Xiang H*. 2013. Haloarchaeal type β-ketothiolases involved in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthesis in Haloferax mediterranei Appl Environ Microbiol., 79(17):5104-11.
[21] Han J, Hou J, Zhang F, Ai G, Li M, Cai S, Liu H, Wang L, Wang Z, Zhang S, Cai L, Zhao D, Zhou J, Xiang H*.2013. Multiple propionyl coenzyme A-supplying pathways for production of the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Haloferax mediterranei.. Appl Environ Microbiol., 79(9): 2922-31.
[22] Cai S, Cai L, Liu H, Liu X, Han J, Zhou J, Xiang H*. 2012. Identification of the haloarchaeal type phasin (PhaP) that functions in polyhydroxyalkanoate accumulation and granule formation in Haloferax mediterranei. Appl Environ Microbiol, 78(6):1946-1952.
[23] Han J, Hou J, Liu H, Cai S, Feng B, Zhou J, Xiang H*. 2010. Wide distribution among halophilic archaea of a novel polyhydroxyalkanoate synthase subtype with homology to bacterial type III synthases. Appl Environ Microbiol, 76(23): 7811-7819
[24] Han J, Lu Q, Zhou L, Liu H, Xiang H*. (2009). Identification of the Polyhydroxyalkanoate (PHA)-Specific Acetoacetyl Coenzyme A Reductase among Multiple FabG Paralogs in Haloarcula hispanica and Reconstruction of the PHA Biosynthetic Pathway in Haloferax volcanii. Appl Environ Microbiol, 75(19): 6168–6175
[25] Lu Q, Han J, Zhou L, Coker JA, DasSarma P, DasSarma S, Xiang H*. 2008. Dissection of the regulatory mechanism of a heat-shock responsive promoter in haloarchaea: a new paradigm for general transcription factor directed archaeal gene regulation. Nucleic Acids Research, 36(9):3031–3042
[26] Pei H, Liu J, Li J, Guo A, Zhou J, Xiang H*. 2007. Mechanism for the TtDnaA-Tt-oriC cooperative interaction at high temperature and duplex opening at an unusual AT-rich region in Thermoanaerobacter tengcongensis. Nucleic Acids Research, 35(9): 3087-3099
[27] Han J, Lu Q, Zhou L, Zhou J, Xiang H*. 2007. Molecular characterization of the phaECHm genes required for biosynthesis of poly(3-hydroxybutyrate) in the extremely halophilic archaeon Haloarcula marismortui. Applied and Environmental Microbiology, 73(19): 6058-6065
[28] Sun C, Li Y, Mei S, Lu Q, Zhou L, Xiang H*. 2005. A single gene directs both production and immunity of halocin C8 in a haloarchaeal strain AS7092. Molecular Microbiology, 57 (2):537–549